The Geometric Distribution is a probability mass function that models the probability of the first success occurring for a given trial, such as:

Example

  • The first student owning an android out of
  • The first person to sit in a seat in a library
  • The first dog that is trained in a group

The geometric distribution is a special case of the binomial distribution with set to .

It is an example of a Memoryless Distribution.


Formula:

Where

  • is the probability of success
  • is the count of trials before the value is expected

Cumulative Distribution Function

The cumulative distribution function for the geometric distribution is:

Properties

The expected value of the geometric distribution is:

The variance of the geometric distribution is: